Code: 22ECMC2T2

I M.Tech - II Semester - Regular Examinations - JULY - 2023

DETECTION AND ESTIMATION THEORY (MICROWAVE & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 60

Note: 1. This paper contains 4 questions from 4 units of Syllabus. Each unit carries 15 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks			
UNIT-I								
1	a)	Discuss the role of estimation in Signal	L2	CO1	7 M			
	1. \	Processing.	1.0	CO1	0.14			
	b)	Explain the unbiased estimation in detail.	L2	CO1	8 M			
OR								
2	a)	Illustrate the process of finding MVU	L3	CO3	7 M			
		estimators.						
	b)	Analyze the Cramer – Rao Lower Bound	L4	CO3	8 M			
		concept with necessary equations.						

UNIT-II									
3	a)	Demonstrate the process of Least Squares Estimation with equations.	L3	CO3	7 M				
	b)	Enumerate the Best Linear unbiased estimation procedure.	L2	CO2	8 M				
OR									
4	a)	With an example discuss Bayesian philosophy.	L3	CO2	7 M				
	b)	Explain the process of selection of prior PDF.	L2	CO3	8 M				
UNIT-III									
5	a)	What is the significance of MAP detection in Hypothesis Testing? Discuss in detail.	L2	CO2	7 M				
	b)	Demonstrate the Minimum Probability of Error Criterion with an example.	L3	CO2	8 M				
OR									
6	a)	Explain Min Max Criterion and provide its necessity.	L2	CO3	7 M				
	b)	Illustrate multiple Hypothesis and its importance.	L3	CO3	8 M				

UNIT-IV							
7	a)	What is WGN? Discuss its role in a system	L2	CO3	7 M		
	b)	that how it affects. Explain the different procedures for detection of Signals.	L4	CO3	8 M		
OR							
8	a)	Demonstrate the M-ary detection process of known signals in WGN.	L3	CO4	7 M		
	b)	Illustrate the Binary Detection procedure with the help of an example.	L3	CO4	8 M		